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By decomposing certain lattices into two sublattices, and examining at percola- 
tion threshold the structure of their infinite clusters, an approximate relation 
between pO, of the original lattice and p/, of the sublattice is established: 
pO ~ (p])l/2. It is conjectured that an inequality always holds: pO < (pf)~/2, and 
heuristic arguments are given to substantiate it. By similar considerations good 
estimates for Pc of certain correlated percolation problems are also obtained. 

KEY WORDS: Percolation; critical concentration; decomposable lattice; 
sublattice; linking cluster. 

1. I N T R O D U C T I O N  

Much work has been done in the last few years in the field of percolation. 
Most of the modern work aims at calculation of the critical indices, looking 
for relations among them, and checking for universality hypotheses and 
looking for universality classes. Much less efforts were directed toward the 
more classical problem of finding the percolation thresholds and establish- 
ing relations among them. This is due perhaps to the fact that the natural 
parameter  in the m o d e m  work is p - P c ,  so that Pc itself does not play an 
essential role in the theory. In the present note an at tempt is made to reveal 
relations among critical probabilities in some lattices for  the site problem. 
These relations are essentially in the form of estimates: when the critical 
probability is given for a certain lattice (e.g., the triangular lattice) it is 
possible sometimes to estimate the value of the corresponding probabili ty 
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for another lattice (honeycomb in this example). It is also conjectured-- 
with no solid proof as y e t - t h a t  these relations may be formulated as 
inequalities, that is, the estimate (for the honeycomb) is in fact an upper 
bound for the actual threshold. 

The present estimates are extremely simple and hardly involve any 
computation. It is therefore not surprising that with such a small amount of 
effort the results are exclusively limited to critical probabilities and not at 
all to indices. It should also be stressed that the method presented here is 
not universal, in the sense that it is not applicable to all systems but rather 
to a certain class, namely, to decomposable lattices only and their corre- 
sponding sublattices. Although decomposable lattices are discussed later, 
let us remark here that they appear in the theory of antiferromagnets as the 
lattices on which no frustration effects may be revealed. In Section 2 the 
notion of decomposable lattices is defined and the estimates, the approxi- 
mation, as well as the conjecture are described and discussed in detail, and 
justified in a heuristic way for the uncorrelated problem. In Section 3 an 
application of the same method for a specific correlated problem is briefly 
described. 

2. DECOMPOSABLE LATTICES 

Let us look at the class of lattices in any number of dimensions which 
have the following property: If there is a loop on the lattice it contains an 
even number of sites. Examples of such lattices are the honeycomb (HC) 
and the square (S) lattices in two dimensions, the diamond (D), the simple 
cubic (SC) and the body-centered-cubic (BCC) lattices in three dimensions. 
Also Bethe lattices--of which the one-dimensional lattice is a degenerate 
example--of any coordination number belong to this class, as they do not 
have loops. This is also true for Bethe lattices with mixed coordination 
numbers. In all these lattices it is assumed that bonds exist only between 
nearest neighbors. Fairly simple and common lattices which do not belong 
to this class are the triangular (T) and Kagome lattices in two dimensions, 
the face-centered-cubic lattice (FCC) in three dimensions, and practically 
any lattice X, where both nearest and next nearest neighbors are directly 
connected [such a lattice is denoted by X(I,2)]. Any lattice in this class is 
decomposable in a unique way into two sublattices: if one site on the 
original lattice (this lattice will be denoted 0) belongs to a sublattice I, then 
all its neighbors with which it is directly connected (or interact) on 0 by a 
bond belong to the second sublattice II, and vice versa. It is obvious that 
when all the sites on 0 are equivalent, the two sublattices are also equiva- 
lent. Two sites on one sublattice are connected by a bond (interact) if there 
is at least one site on the other sublattice which interacts with both on 0. 
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Fig. 1. Examples of some decomposable lattices 0 (bonds denoted by dashed lines) and their 
corresponding sublattices (bonds denoted by solid lines). For each 0 lattice only one of the 
sublattices is indicated. (a) Linear lattice. (b) Honeycomb and triangular. (c) Square and 
square (1, 2). (d) Bethe lattice with coordination number 3 and the corresponding cactus. The 
bonds between next nearest neighbors on the sublattice in (a) and (c) are drawn as curved 
lines in order to avoid overlapping with the bonds on the 0 lattice. 

Let us call such a site a linking site. Thus the one-dimensional lattice may 
be decomposed into one-dimensional lattices. In two dimensions HC lattice 
is decomposable into T lattices, and S lattice into S(1,2) lattices. In three 
dimensions D lattice is decomposable into FCC lattices, SC lattice into 
FCC (1, 2) lattices and the BCC into SC(1,2, 3) lattices. The Bethe lattices 
are decomposed into cacti or generalized cacti. In Fig. 1 some decompos- 
able lattices and the corresponding sublattices are given. 0 is therefore a 
superposition of I and II. Any cluster of occupied sites on 0 is composed of 
two occupied subclusters on I and II: if two I sites belong to the same 
cluster on 0, they also necessarily belong to the same cluster on I. The 
converse is not true: two sites may belong to the same cluster on I, but not 
necessarily on 0 if none of their linking sites on II are occupied. The same 
holds of course for infinite (percolating, spanning) clusters, which means 
that percolation occurs in 0 only if it occurs simultaneously in both I and 
II. Hence a rigorous--though trivial--relation is obtained 

po =p,, (1) 
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Fig. 2. An  example for a cluster on I and  the corresponding linking cluster on II. Each 
sublattice is S(1,2). Solid circles denote occupied sites on I which are part of an infinite 
cluster; d iamond shapes denote linking sites on II. Although a and b are directly connected 
(as next nearest neighbors) on a normal  S(1, 2) lattice, they are not  on this LC, because A, 
their linking site on I (denoted by an open circle), is vacant; and the same holds for e and d 
(nearest neighbors) whose linking sites E and D are also vacant.  

Let us try to obtain a more significant result. For this goal we consider a 
generalized problem: Suppose that I sites and II sites are randomly occu- 
pied with different probabilities Pl and P2. What is the condition that the 
superimposed population percolates on 0? From Eq. (1) we get the neces- 
sary trivial conditionpj > p~ for i = 1, 2. It is also obvious that for a fixedpl 
in the interval [p~, 1] there is a critical probability P2 = P~I(Pl) which is the 
threshold probability for percolation on 0. In fact the curve P2 = p~i(p~) is 
the critical line in (Pl, P2) plane separating the percolating phase from the 
nonpercolating one. The probability p~I(pl) may be estimated as follows: 

Consider the infinite cluster on I (which will be denoted Iinr) and all 
sites on II which link together, on 0, pairs of sites in Iinf--call it the linking 
cluster (LC). The linking cluster is obviously infinite, but not all of its sites 
are necessarily occupied (unless P2 = 1). Moreover, LC is actually a graph 
on II, where some of the bonds between normally interacting pairs of sites 
may be missing--if all the corresponding linking sites on I are vacant and 
therefore do not belong to Iin f (see Fig. 2). 

It is clear that if all the sites on LC are occupied (P2 = 1) there is an 
infinite cluster on 0, which is well above threshold (if Pl > P~). In order to 
bring the LC, and simultaneously 0 too, down to percolation threshold, I! 
sites should be diluted by exactly p~I(p 0. If nothing is known of the 
structure of LC a plausible assumption is that it is similar in some sense to 
Iin f. This may be regarded as a mean field approximation or as an 
ignorance hypothesis. The dilution factor Pd which brings down Ii, f to 
percolation threshold is exactly expressible by p~ and P], namely, Pd 
=P~/Pl" With the similarity assumption between LC and Iin f we get the 
obvious estimate: 

e lI (p,) ~.,1)I/pl ( 2 )  
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Fig. 3. The critical line in (p~, Pz) plane for a typical case. The solid line is the approximale 
hyperboIa p~pz=p~. The exact critical line is schematically drawn by a dashed )ine. I t  is 
conjectured that it should always lie below the hyperbola. For a Bethe lattice the hyperbola is 
indeed the correct result with pJ = 1 / (z  - 1)2 Point A is the exact critical isotropic point  at pO; 
B is the approximated one at  (p~)~/~. 

and the critical line in the (P1, P2) plane will be 

e,e --g = (3) 
which means that it is approximately a hyperbola (see Fig. 3). Let us notice 
that at least for/7~ = 1 orpz -=- 1 the relation (3) is trivially exact. 

If we are interested only in the "isotropic" case, p~ = Pz, which was the 
starting point of this discussion, and which is the more conventional 
percolation problem, we get 

0 ~ + :  Ix l /2  

Let us examine more closely some of the consequences of this estimate, 
taking advantage of well-known cIassicaI exact results. 

(i) When 0 is the honeycomb lattice, ] is the triangular lattice T: 
p~ = p~  - 0.5 is exactly known (Sykes and Essam < 1,2)), so that 

pff ~-. (0.5) ~/2 = 0.707 (5) 

A good empirical result for F,H is 0.6973 + 0.001 obtained by Vicsek and 
Kertesz. o) 

With this result we can be pretty sure thatp~p2 -- 0.5 according to Eq. 
(3) is indeed a good approximation for the actual critical line. The result of 
Eq. (5) was recently obtained elsewhere: Joy and Strieder ~4) obtained it, 
also as an approximation based on effective medium theory of conductiv- 
ity; Kondor (5) claims that Eq. (5) should be read as a strict equality. 
However, this claim is conjecture-dependent, and we believe (see the 
following discussion) that the correct relation is p n c  < (0.5)Vz, i.e., p~C is 
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slightly less than (0.5) 1/2 , which is apparently confirmed by the empirical 
evidence. 

(ii) When 0 is S, the square lattice, I is the S(1,2) lattice. Here another 
exact result, due to the matching relation between the two, is known: (i'2) 

p~ + pS(I,2) = 1 (6) 

Together with relation (4) we get 

(p~)2 + p~ ~ 1 (7) 

the solution of which is 

p ~  (,~- - 1)/2 = 0.618 (8) 

A good empirical result (Reynolds et a/. (6)) is p~ = 0.593. Both results (5) 
and (8) are in a relatively good agreement with "experiment." The first 
deviates by about 0.01 and the second by 0.025. Both are overestimates. 

(iii) For the one-dimensional lattice Eq. (4) is trivially exact, p~ = po 
= 1. Moreover, Eq. (3) is also an exact result for Bethe lattices: If the 
coordination number of the Bethe lattice is z, then Pc = 1 / ( z -  1) (Fisher 
and Sykes(V)). The sublattices here are generalized cacti, the coordination 
number of which is z ( z  - 1), but due to the existence of loops itspc may be 
easily shown to be 1 / ( z  - 1) 2, so thatp  ~ = (p~)l/2 is a strict equality. This is 
also true even for the more general lattice where the coordination numbers 
on 0 of I sites and II sites are not equal. 

The detailed results for all systems for which data were available are 
summarized in Table I. Inspecting Table I, one observes that relation (4) 
can be invariably replaced by an inequality 

pO < (pcI)l/2 (9) 

where the equality holds only for Bethe lattices (including the one- 
dimensional case). This result may be interpreted, in fact, as if the linking 
cluster is not equivalent exactly t o  Iin f but rather it is more abundant or 
more compact (or both), so that it should be diluted more than Iin f in order 
to reach threshold. It would be expected that relation (3) for the critical line 
should be replaced by 

p,p2 < el (10) 
Indeed we conjecture that Eqs. (9) and (10) are always correct. Some 
arguments substantiate the above interpretation and conjecture; let us 
follow some of them: 

(i) The probability p that a site on II links at least two occupied sites 
on I is 

? ( p , )  = 1 - np,(1 - p , ) " - ' -  (1 - p , ) " =  1 - n p , q ; - "  - q ;  (11) 
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Dimension 

2 

Table II. Estimates forp ~ by So lv i ngp lp (pO = p~ 

0 I P~ P(iOl) Pc* = [(Pel) 1/2 + p l ] / 2  POc C* --Pc~Pc-- * O_  1 

HC T 0.670 0.746 0.689 0.698 - 0.013 
S S(1, 2) 0.543 0.749 0.591 0.593 - 0.003 
D FCC 0.390 0.507 0.418 0.428 - 0.023 
SC FCC(1, 2) 0.268 0.508 0.318 0.311 0.026 
BCC SC(1,2,3) 0.198 0.491 0.255 0.243 0.048 

i 

where n is the coordination number on 0 and q = 1 - p .  It can be easily 
shown that 

/3(Pl) > Pl for Pl > 1 / (n  - 1) (12) 

where the equality holds only for n = 2 or n = 3 and P] = 1/ (n  - 1). We 
are interested, of course, only in probabilities Pl > po/> l(n - 1). Hence if 
the linking sites on II were completely uncorrelated, then the infinite LC 
would indeed be more abundant than Iin f and its dilution factor would be 

0 - Pc~P, which is less t h a n p ~  so that Eqs. (9) and (10) are obtained. 
The above consideration led us to a new estimate for pc ~ as the root of 

the equation: 

pl /~(p0 =p~ (13) 

The results of this estimate are given in Table II. 
The roots of Eq. (13) are invariably smaller than the previous ones, as 

they should be, but also smaller than the empirical thresholds. Their 
deviations from the empirical values are mostly of the same order of 
magnitude as the deviation of (/oi) 1/2 . It turns out that (with the exception 
of the Bethe lattices) the average [Pl + (P~)1/2]/2 may be used as a better 
estimate for pO than each of the individual ones. This perhaps indicates that 
still better results may be obtained by taking into account more and finer 
details of LC. 

(ii) Another argument which makes the conjecture plausible is the 
following: Consider a new linking cluster, which is the set of all sites on II 
which are neighbors of at least one site on Iin f (and not necessarily of two as 
before). It is trivially true that the pair connectedness function on this 
linking cluster is at least equal to the corresponding function on Iin f. This 
also indicates (although not rigorously proves) that the dilution factor of I! 
sites should be lower than the dilution factor on I, from which we obtain 
again our conjectures (9)-(10). 

(iii) A further indication is an "empirical" one. By construction ran- 
domly large (but finite) clusters in I (with p l o p  ~ and studying the 
structure of the corresponding linking clusters it is always obtained that the 
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linking cluster is more abundant, and also more compact-- the average 
number of its bonds per site is greater than the number for the primary 
cluster on I. This has been checked for square and honeycomb lattices. 

(iv) The last indication to the validity of the conjecture is the fact that 
the relation (9) is a strict equality for Bethe lattices, which are in a sense a 
limiting case of actual lattices. It may be expected that for them the ratio 
(p~)~/z/po gets its minimum, 1. It seems that all these are plausible 
arguments, but they still do not furnish a solid proof to the conjecture. 

Coming back to the results of Table I we notice that although all of 
them obey the inequality (9), their deviation from equality, measured by the 
index c = (p~)l/2/pO _ 1, vary. For Bethe lattices c = 0, for HC and D it is 
fairly small, for the other lattices it is much bigger. This effect is indeed 
reasonable: The assumption of similarity between LC and Iin f which led to 
Eq. (4) is plausible where for each pair of directly interacting occupied sites 
on I there is just one linking site on II. This is true for HC, D, and Bethe 
lattices, whereas for all other lattices, 1, the maximum number of linking 
sites, is 2 or 4 [e.g., for the square lattice, the pair (0, 0) and (1, 1) is directly 
connected on I and has two linking sites (0, 1), and (1,0); for BCC the pair 
(0,0,0) and (1,0,0) on I has four linking sites: ~,~,~,,~ ~ ~'~ ( ! , - 2  ~,~),' 
(!,�89 , -• and (!,2 - � 8 9  �89 It is expected therefore that the linking 
cluster is relatively more abundant the higher is l, and hence po should be 
relatively smaller. Indeed for both dimensionality 2 and 3, the index c 
increases with l. 

However, it is clear that l itself is not the only factor that determines c, 
e.g., Bethe lattice with z = 4, HC, and D all have the same l and still differ 
by c. It is reasonable to believe that both dimensionality and length of 
minimal loop in each lattice also play a significant role in determining the 
critical probability. 

3. CORRELATED PERCOLATION 

The above considerations are applicable also to some correlated prob- 
lems. As an illustration we apply them to the "polychromatic" correlated 
site problem. This problem may be relevant to the understanding of the 
properties of supercooled water as proposed by Stanley. (1~ The formula- 
tion of this specific problem is the following: In a square (or diamond) 
lattice each site is linked by four bonds to other sites. Let the bonds be 
randomly occupied with probability p. Sites which are surrounded by four 
occupied bonds are called "green." The problem is to find the critical 
probability for percolation of the green sites. 

Evidentlypg, the occupation probability of the green sites, is 

pg = p4 (14) 
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but the green sites are correlated (e.g., if it is known that a certain site is 
green, the probability of any of its nearest neighbors being green is 
193> p4 =pg). However, decomposing the original lattice into two sublat- 
tices [each S(1,2) or FCC(1)], the green sites on each are totally uncorre- 
lated (Gonzales(ll)), because no two sites on I have a bond in common. 
Still, the exact formulation of this problem as a site percolation problem is 
quite complicated for the following reason: Once the population of the 
green site is randomly established on I, the green sites on II are correlated 
both with the I sites and among themselves. However, naive considerations, 
similar to the ones already used for the uncorrelated problem, would lead 
again to an estimate for the percolation threshold p~: 

The green sites percolate on I, hence 

p~ >/p~ (15) 

Owing to the positive correlation on 0 it is intuitively expected that 

p g < p o  (16) 

The green sites have also to percolate on the linking cluster on I. Each 
linking site has already at least two occupied bonds (with which it is linked 
to two green sites on Iin 0. Hence, the probability that it is also green is at 
least p2 = (pg)|/2. Repeating the previous arguments for the present prob- 
lem we get 

p~ ~pf(p~),/2= (pf)3/2 (17) 

o r  

= (17a) 
The numerical results are, by using the known empiricalp~ values, 

for square lattice (pS) s = 0.550 
(18) 

for diamond lattice (pg)D = 0.34 

The corresponding empirical results obtained by Monte Carlo calcula- 
tion are (pg)S = 0.562 (Blumberg et al.(12)), and--preliminary result--(pg)D 
= 0.35 (Blumberg and Stanley(13)). In fact the latter empirical result was 
obtained for the ice lattice, but presumably the result for the diamond is 
very close to it. Both estimates deviate by about 0.01 from the empirical 
values, which may be regarded as very good approximations. Let it be 
stressed, however, that unlike the estimates for the uncorrelated problem, 
the present ones are higher than the empirical values and the reason is quite 
clear: When Iin f is given, the occupation probability of the linking cluster is 
also given. If correlation among green sites on II is neglected, the probabil- 
ity p, of a II site to be green, provided it has exactly p green neighbors on I, 
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is 

Pv -~- //9 1 _ p 4  ] , P = 2 , 3 , 4  (19) 

the relative weight for this event is 

4 4v Wv=(p)p ( l  - p 4 )  4 - e  (19a) 

Thus we get the probability that a site on the linking cluster is green 
(Shlifer (]4)) 

~4=2W~p~ p2 6 - 8p 3 + 3p 6 (20) 
Pv/>2 -- 4 E~=2W~ 6 8p4 -I- 3p 8 

This expression is less than p2 as assumed before. The neglect of this effect 
influences the estimate for p f to be too low. Substituting (pg)l/2 in Eq. (16) 
byp ,~2  of Eq. (20) and solving it, we get new estimates 0.61 for (p~)S and 
0.38 for (pcg) D. Both results are now too high because the effects of the 
structure of LC, discussed in the previous section, were ignored. It is hoped 
that by taking all the important effects into consideration the correct values 
will be more closely reproduced. However, it is very remarkable that when 
both structure and correlation effects are neglected the estimates are so 
close to the empirical values. 

Similar "green" problems may be defined for other lattices. If we 
define on the honeycomb lattice a green site as a site with three occupied 
bonds, the estimate for threshold is given by 

(/)cg)HC~-~ (ecI) 3/4= (0.5) 3/4= 0.595 (21) 

This value has not yet been empirically calculated and it is given here as a 
prediction. 

4. CONCLUSION 

By very elementary arguments about the structure of the infinite 
cluster in the site percolation problem, a few approximate relations have 
been obtained among Pc of decomposable lattices and the Pc of the 
corresponding sublattices. By heuristic arguments we could establish these 
relations as inequalities, which are conjectured J to be always true. This 
method, although not universal, is still applicable to some of the most 
commonly used lattices. It is also very satisfying that it may be extended to 
correlated percolation, and also to a generalized two-parameter "an- 
isotropic" site problem, for which critical lines are obtainable in an approxi- 
mate way. 
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No attempt has been made here to produce critical exponents or 
relations among them. A priori it seems that the present method will fail to 
achieve this goal, because at least one of the sublattices (and in the 
isotropic problem both) are way off the critical region, as pO _ p~ is usually 
not a very small number. 

Nor did we try to get the exact shape of the critical line in the 
anisotropic problem (except for the Bethe lattice). In our simplest estimate 
we got it as a hyperbola, but a more detailed examination of the problem 
may reveal some finer features. There are some indications that the critical 
line in a real lattice is perpendicular to the lines Pl = 1 and t7 2 = l, or at 
least form less acute angles than the first approximation yields. This 
behavior will be studied in the future. Some other problems will be treated 
in the future: We will try to establish a more rigorous proof for the central 
conjecture [Eqs. (9) and (10)]. Also an attempt will be made to find more 
accurate relations among threshold probabilities, in order to improve the 
estimates and replace the approximate and the inequality signs by an 
equality sign, even though it would probably involve infinite series. It is 
hoped, however, that the first few terms of the series will be more easily 
calculated than by other methods. 
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